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Abstract—Understanding and predicting the human visual
attentional mechanism is an active area of research in the fields
of neuroscience and computer vision. In this work, we propose
DeepFix, a fully convolutional neural network for accurate
saliency prediction. Unlike classical works which characterize the
saliency map using various hand-crafted features, our model au-
tomatically learns features in a hierarchical fashion and predicts
saliency map in an end-to-end manner. DeepFix is designed to
capture semantics at multiple scales while taking global context
into account using network layers with very large receptive fields.
Generally, fully convolutional nets are spatially invariant which
prevents them from modeling location dependent patterns (e.g.
centre-bias). Our network handles this by incorporating a novel
Location Biased Convolutional layer. We evaluate our model on
multiple challenging saliency datasets and show that it achieves
state-of-the-art results.

I. INTRODUCTION

Identifying conspicuous stimuli in the visual field is a
key attentional mechanism in humans. While free viewing,
our eyes tend to fixate on regions of the scene which have
distinctive variations in visual stimuli such as a bright colour,
unique texture or more complex semantic aspects such as
presence of a familiar face or any sudden movements. This
mechanism guides our eye gaze to the salient and informative
regions in the scene.

The human visual system is dictated by two kinds of
attentional mechanisms: bottom-up and top-down [1]. Bottom-
up factors, which are derived entirely from the visual scene, are
responsible for the automatic deployment of attention towards
discriminative regions in the scene. The involuntary detection
of a red coloured STOP sign on the road, while driving, is an
example of this attentional mechanism. This kind of attention
is automatic, reflexive and stimulus-driven. On the contrary,
the top-down attention mechanism is driven by internal factors
such as subject’s prior knowledge, expectations and the task
at hand, making it situational and highly subjective [2]. It uses
information available in the working memory, thereby biasing
attention towards areas of the scene important to the current
behavioral goals [3]. The selective attention exhibited by a
hungry animal while searching for its camouflaged prey is an
example of the top-down mechanism.

In this work, we propose an approach for modeling the
bottom-up visual attentional mechanism by predicting human

Srinivas S S Kruthiventi and R. Venkatesh Babu are with the Video
Analytics Lab, Dept. of Computational and Data Sciences, Indian Insti-
tute of Science, Bangalore 560012, India (e-mail: kssaisrinivas@gmail.com;
venky @cds.iisc.ac.in).

Kumar Ayush is with the Indian Institute of Technology Kharagpur, India
(email: kumar.ayush@iitkgp.ac.in).

Fig. 1. Tllustrative images (I column) along with saliency maps predicted by a
classical method [4] (II column) and DeepFix (III column). For the Monkeys’
image in I row, prediction models attribute saliency to the bright white paper
and the orange mushrooms in the background leaving out the actual salient
region - the monkeys’ faces [5]. In the image in II row, even though observers
consistently fixate on the text on the board, popular models incorrectly predict
saliency in the regions of the bright colored flag and the pole [S]. Our network
predicts saliency accurately in both the cases. (Best viewed in color)

eye fixations on images. This modeling, commonly referred
to as visual saliency prediction, is a classic research area
in the field of computer vision and neuroscience [6], [7].
This modeling has applications in vision-related tasks such
as video compression [8], object and action recognition [9],
[10], image retargetting [11] and surveillance systems [12]. In
the past, many computational models have been developed to
predict human eye fixations in the form of a saliency map -“a
topographically arranged two dimensional map that represents
the visual saliency of a scene” [13]. Saliency map predictions
for two example images are shown in Fig. 1.

Saliency in a visual scene can arise from a spectrum of
stimuli, both low-level (color/intensity, orientation, size etc.)
and high-level (faces, text etc.). Most of the classic saliency
models [7], [4] are biologically inspired and use multi-scale
low-level visual features such as color and texture. However,
these methods do not adequately capture the high level seman-
tic aspects of a scene that can contribute to visual saliency. The
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wide variety of possible causes, both low-level and high-level,
make it difficult to hand-craft good features for predicting
saliency. This makes deep networks, which are capable of
learning features from data in a task dependent manner, a
natural choice for this problem.

Recently, deep networks have shown impressive results on a
diverse set of perceptual tasks such as speech recognition [14],
natural language processing [15] and object recognition [16].
The ability of deep neural networks to automatically learn
complex patterns from data in a hierarchical fashion makes
them applicable to a wide range of problems with different
modalities of data. Though neural networks are being used
in the field of artificial intelligence since many decades, their
recent wide applicability can be attributed to the increased
computational power of GPUs, efficient techniques for train-
ing [17] and the availability of very large datasets [18], [19].

In this work, we propose a fully convolutional neural net-
work - DeepFix, for predicting human eye fixations on images
in the form of a saliency map. Our model, inspired from VGG
net [20], is a very deep network with 20 convolutional layers,
each of a small kernel size, operating in succession on an
image. The network is designed to capture object-level se-
mantics, which can occur at multiple scales, efficiently through
inception style [21] convolution blocks. Each inception module
consists of a set of convolution layers with different kernel
sizes operating in parallel. The global context of the scene,
which is crucial for saliency prediction, is captured using
convolutional layers with very large receptive fields. These
layers are placed towards the end of the network and replace
the densely connected inner product layers commonly present
in convolutional nets.

Fully Convolutional Nets (FCNs) [22], in general, are
location invariant i.e., a spatial shift in the input results
only in a corresponding spatial shift of the output without
affecting its values. This property prevents FCNs from learning
location specific patterns such as the centre-bias. The proposed
DeepFix model is designed to handle this through a novel
Location Biased Convolutional (LBC) layer.

Overall, our model predicts the saliency map from the image
in an end-to-end manner, without relying on any hand-crafted
features. Here, we summarize the key aspects of our DeepFix
network:

o Large depth - to enable the extraction of complex seman-
tic features

o Kernels of different sizes operating in parallel - to char-
acterize the object semantics simultaneously at multiple
scales

o Kernels with large receptive fields - for capturing the
global context

o Location biased convolutional layers - for learning loca-
tion dependent patterns such as the centre-bias present in
eye fixations

We evaluate the proposed network on multiple challenging
saliency datasets MIT300 [5], CAT2000 [23], PASCAL-S [24],
OSIE [25], FIGRIM [26], SALICON Test Set [27], iSUN Test
Set and show that it achieves state-of-the-art results on these
datasets.

II. RELATED WORK

Treisman et al., in their seminal work of Feature Inte-
gration Theory (FIT) [6], proposed that preliminary features
from visual stimuli are simultaneously processed in differ-
ent areas of the brain resulting in multiple feature maps.
These feature maps are later aggregated to aid in object
recognition. Using these principles of human vision, Koch et
al. [28] first proposed a biologically plausible computational
architecture for modelling these early feature representations
to artificially simulate the selective attention mechanism in
humans. Later, Itti et al. [7], building upon the work of [28],
implemented a novel system for visual saliency prediction
in images. Their model extracts bottom-up visual features of
color, intensity and orientation using various blocks. These
features are integrated using a dynamic neural network, to
construct a two-dimensional representation, called a saliency
map which indicates the conspicuity of every pixel in the
image. Experimentally, this model was shown to be reasonably
successful in detecting centre-surround saliency in images.
However, generalization of this model for saliency prediction
in complex scenes is difficult because of the primitive nature of
its features and the multiple parameters used for constructing
them at various scales. Recently, several other works have
employed more complex features maps such as isocentric
curvedness [29], regional histograms [30], depth cues [31]
etc. for estimating saliency. Also, Erdem er al. [32] have
proposed a non-linear feature integration approach for saliency
prediction, using regional covariance features [33].

While the works discussed above are mainly driven by
results from neuroscience and psychology, there have also
been works which are motivated from an information theory
perspective [34]. Oliva et al. [35] have taken a top-down
approach wherein the statistical rarity of local features across
the scene becomes a crucial factor for a region to be salient.
Bruce et al. [36] have explored an information theoretic
approach, where the self-information of local image content
is used in predicting attention allocation.

Recent progress in saliency prediction has mostly been
driven by the advances in deep learning. Convolutional Neural
Networks (CNN), whose design is motivated by the function-
ing of cells in visual cortex of primates, can capture semanti-
cally rich visual features in a hierarchical fashion. While some
of these works extract features from pre-trained CNNs [37], a
few others have trained their networks specifically for saliency
prediction [38] [39] [40].

In contrast to the traditional usage of multi-scale hand
crafted image features, Kiimmerer et al. [37] have proposed an
approach of using feature representations from AlexNet [16]
trained for object classification, to perform saliency prediction.
Further, the extensive experimental evaluation conducted by
Kiimmerer et al. highlights the importance of feature repre-
sentations from deeper layers of a CNN in saliency predic-
tion. Though CNN representations are usually generalizable
between vision tasks (e.g., object classification to saliency
prediction) [41], our work emphasises that a task-specific
convolutional neural network with a large depth, trained in
an end-to-end manner, can outperform approaches using off-
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the-shelf CNN features by a large margin.

A recent work by Vig et al. [39] proposes a method for
obtaining optimal features by performing a large scale search
over different feature-generating model configurations. Each
model is considered to be a small convolutional neural network
with a maximum of 3 layers, to constrain the computational
complexity of overall system. However, this model can not
efficiently leverage the semantic feature extracting capabilities
of CNNs because of the small depth (<= 3) of the individual
feature extractors.

Liu et al. [40] construct an ensemble of CNNs, termed
as Multiresolution-CNN, for predicting eye fixations. Each of
these CNNs is trained to classify image patches, at a particular
scale, for saliency. This approach of predicting saliency with
multiple scale-specific CNNs is efficient for capturing both
the low-level and high-level aspects of an image. However,
since this approach presents isolated image patches to the
network, it fails to capture the global context, which is often
crucial for saliency. The proposed DeepFix network overcomes
this by operating on the image as a whole and capturing
the semantics at multiple scales through its inception style
convolution blocks.

Another recent work, SALICON [42], also follows a multi-
stream approach for saliency prediction with the network’s
objective function specifically designed for saliency. This work
uses two VGG streams, each specializing for a particular
scale. This increases computation since each image has to pass
through two networks. In contrast, DeepFix performs a single
pass and efficiently obtains multi-scale representation using
inception modules.

The approach of processing image at different scales using
multiple network streams has been utilized also for the task
of salient object segmentation [43]. However, in our recent
work [44], our approach of capturing semantics at multiple
scales and extracting contextually rich features is shown to
be effective for simultaneously predicting eye fixations and
segmenting salient objects in the image as well.

III. PROPOSED APPROACH
A. DeepFix Architecture

DeepFix is a fully convolutional neural network, trained
to predict pixel-wise saliency values for a given image in an
end-to-end manner. The key features of the proposed CNN
architecture are described below:

1) The network takes an image of size W x H x 3 (RGB
image) as input. This is followed by a series of 5
convolution blocks ((D to (), depicted as dashed brown
boxes in Fig. 2.

2) Similar to the VGG-16 net [20], the first two blocks (D,
@) contain two convolutional layers each, while the next
three (3), @, @) have three convolutional layers. Each
convolution filter in these five blocks is restricted to a
kernel size of 3 x 3 and operates with a stride of 1.
This allows the network to have a large depth without
increasing the memory requirement. All convolutional
layers in the network are followed by Rectified Linear
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Fig. 2. Architecture of the proposed DeepFix model

Unit (ReLU) activation to introduce element wise non-
linearity.

3) Additionally, each of the first four blocks (D to @) have
a max-pool layer (of size 3 x 3) following the convolu-
tional layers. Apart from introducing local translational
invariance in its output, max-pooling (with stride) re-
duces computation for deeper layers while preserving
the important activations [45].

Starting from the first convolutional block (D), the
number of channels in the outputs of successive blocks
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(a) Conv. kernel of size 3x3

Fig. 3.
have a

4)

5)

3 -2 1 0 3 0 -2

(b) Conv. kernel of size 3x3 with hole - 2

Convolution kernel with holes. These kernels enables the layer to
greater receptive field without increasing the memory footprint.

gradually increase as 64, 128, 256, 512, depicted as num-
bers over dotted lines in Fig. 2. This enables the net
to progressively learn richer semantic representations
of the input image. However, to limit the overall blob
size, the spatial dimensions of the blob are halved with
every increase in the blob’s depth. This is achieved by
introducing a stride of 2 in the max-pool layers of the
first 3 blocks. This results in an output blob of spatial
dimensions %~ x £ after the third block. These spatial
dimensions are retained in all the further layers.

While training, the weights of the filters in the five
convolution blocks (D to ®) of DeepFix are initialized
from the VGG-16 net. The weights of VGG-16 net
have been learnt by training on 1.3 million images
of the ImageNet [18] database. Initializing the weights
from network trained on such a large corpus of images
is observed to be important for stable and effective
learning.

However, in the VGG-16 net, the spatial dimensions of
the output blob are halved at the end of each convolution
block, including the fourth and fifth blocks. In our
network, to allow for the filters in the fifth block (3) to
operate on the same receptive field they are originally
trained for, we introduce holes of size 2 in their kernels.
Convolution filters with holes are illustrated in Fig. 3.
The convolution filters of the fifth block, with kernel
size 3 x 3 and hole size 2 have a receptive field of 5 x 5.
Jay et al. [46] follow a similar procedure of introducing
holes in filters to facilitate weight initialization in their
work of semantic image segmentation.

While the initial convolution blocks extract low-level
image cues such as colour, contrast, texture, etc., the
feature maps obtained from the fifth block are shown
to characterize high-level semantic information [47].
Previous works have shown that saliency is best captured
when semantics are considered from multiple scales [7],
[48]. Inspired by the recent success of GoogLeNet [21],

| 1x1_1(128) || 1x1_1(32) || 3x3_1(512) |

| 1x1_1(128) || 3x3_1(256) ”3x3_1<2>(64)” 1x1_1(64) |

:: Convolutional Layer
followed by ReLU

:: Max pool Layer

wxh_s<h >(d): Layer with kernels of width - w height-h stride - s

hole - h giving an output blob with depth - d

Fig. 4. Constituent layers of the Inception module used in DeepFix network

6)

7)

we capture the multi-scale semantic structure using two
inception style convolution modules (in @), illustrated
in Fig. 4.

Each inception module operates on its input feature map
with filters of multiple sizes, thereby capturing the multi-
scale information. In the proposed inception module, we
use convolutional layers of two sizes : 1 x 1, 3 x 3.
Unlike the inception module of GoogLeNet, the 5 x 5
convolutional layer is simulated through a 3 x 3 layer
with holes of size 2. The number of channels in previous
layer’s output are brought down using 1 x 1 layers
before feeding it to these layers. Additionally, a parallel
max-pool layer is added in this inception module to
bring in local invariance and it is followed by a 1 x 1
convolutional layer.

Saliency, in neuroscience literature, is often character-
ized as the unique quality of an entity by which it stands
out with respect to its neighbours [49]. This property
can be best captured when the local semantic features
of an image region are examined in the context of its
neighborhood. To facilitate this, the convolutional layers
(in @) following the inception modules are designed to
have very large receptive fields by introducing holes of
size 6 in their convolution kernels. As shown in Fig. 3,
these filters with holes can operate on input regions
larger than their actual kernel size without increasing
the memory footprint. These two layers have a receptive
field of 25 x 25 on their respective inputs.

In addition, the convolution operation in these two layers
is made location dependent to model the centre-bias
observed in eye fixations. We term these layers as
Location Biased Convolutional (LBC) layers and are
explained in detail in Sec. III-B. We observe that these
two layers are effective at capturing the global context of
the image and have resulted in a significant performance
improvement.

To avoid over-fitting and to make the model more
general, we have introduced drop-out in the output of
the second LBC layer. We have chosen a dropout ratio
of 0.5.

Finally, the output from the second LBC layer (in (@)
is fed to a 1 x 1 convolutional layer whose output is
taken to be the predicted saliency map. The obtained
map has a spatial resolution of % X % due to the greater-
than-unit stride present in the max-pool layers of the
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first three blocks. We upsample this map to the original
image resolution using bicubic interpolation.

B. Centre-bias in Eye Fixations

Statistically, it has been observed that a significant number
of the human eye fixations fall in the central region of an
image. This tendency of humans to gaze at the centre while
free-viewing is termed as centre-bias in eye fixations and has
been studied extensively in the fields of neuroscience and
psychology [50], [51]. This phenomenon is often explained
through photographer’s bias - the innate tendency of photog-
raphers to capture the object of interest by positioning it at
the centre of the view. This is found to result in a secondary
effect where viewers, after repeatedly viewing such images
with the photographer’s bias, expect that the most informative
content of an image is likely to be present at the centre [51].
This guides their attention involuntarily towards central region
of an image even in the absence of the photographer’s bias.
This secondary effect is described in the literature as bias
due to viewing strategy. Also, Borji et al., in their work on
CAT2000 [23], experimentally observed that uninterestingness
of images could result in eye fixations towards the image
centre. These findings suggest that eye fixation patterns are
an outcome of both the underlying stimulus and its location.

To account for the spatial biases present in the human eye

fixations, some works in the past have employed an explicit
centre-bias term in their saliency prediction models [39],
[37], [52]. In contrast, we design the DeepFix architecture to
learn location-dependent patterns implicitly through a novel
Location Biased Convolutional (LBC) layer. This layer learns
to add centre-bias to saliency maps in an image-dependent
manner within the CNN framework instead of adding a con-
stant centre-bias to saliency predictions of all images. Next,
we describe the construction of LBC layers.
Location Biased Convolutional (LBC) layer : The con-
stituent layers of a fully convolutional net (Convolutional,
ReLU and Max-pool layers) are location invariant i.e., a spatial
shift of input image will only result in an equivalent scaled
spatial shift in the output while keeping the values nearly
intact. This property of fully convolutional nets prevents them
from learning any location-dependent patterns such as the
centre-bias. We tackle this problem by introducing location
dependency in the two convolutional layers following the
inception modules of the proposed DeepFix architecture.

Let W, represent weights from ct* filter in a convolutional
layer and b, represent its bias. Let the feature vector at spatial
location (i, y) in the input blob to this layer be I(x, y) and the
cth filter’s response be R.(x,y). This convolution operation
can be represented as

Re(a,y) = R(Z (1@ + i,y +9) + Welij) + bc)) M
i
where * represents dot product and R represents ReLU non-
linearity.
Here, the weights W, and the bias b. are completely
independent of the location (x,y) at which they operate, mak-
ing the convolutional operation location invariant. Introducing

spatial dependency directly by making the filter weights a
function of the spatial coordinates will increase the number
of layer parameters dramatically (proportional to the product
of the spatial dimensions of input blob). This also goes
against the principle of weight sharing in CNNs which is
considered to be an important reason for their effectiveness in
visual recognition. We address this problem by concatenating
a data independent and location specific feature L(x, y) to the
existing input feature I(x,y). This results only in a minimal
increase in the number of layer parameters (i.e., linear with
the dimension of the L(x,y)) and is independent of the input
blob’s spatial size.

Re(z,y) = R(Z (I(:E +i,y+7) * Weli, j)+
v 2
Lz + i,y + )« W e(i.j) + b))

While the location specific features, L(z,y), remain con-
stant through the entire training procedure, the weights of
a filter operating on it, WIC, are learnt over training. This
enables the network to optimally combine input stimuli with
its location information for predicting the final saliency map.
We choose the location-specific feature L(z,y) to be 16
dimensional with each component giving different weights to
the central region, each obtained from a Gaussian of a specific
horizontal and vertical variance. The 16 constant maps from
which these location specific features are obtained are shown
in Fig. 5 (b).

IV. EXPERIMENTAL EVALUATION
A. Training DeepFix

The parameters of the first five convolution blocks are
initialized from the VGG-16 net [20]. The weights in the
convolutional layers of the inception modules and the two LBC
layers following them are drawn from a Gaussian distribution
with zero mean and standard deviation of 0.01, and the biases
are set to 0. The weights of the last convolutional layer are
also drawn from a zero mean Gaussian distribution but with
a standard deviation of 10 and the bias is set to 0.

During training, all the layers in the five convolution blocks,
whose weights are initialized from VGG-16, are learnt with
an initial learning rate of 2 x 10~ The remaining layers,
whose weights are randomly initialized from Gaussian, are
assigned a higher learning rate of 2 x 1073, We scale down
the learning rates of all the layers by a factor of 5 whenever
the performance saturates on the validation set. The network
parameters are learned by back-propagating the euclidean loss
of the predicted saliency map with respect to the ground
truth saliency using Stochastic Gradient Descent (SGD) with
momentum. The network is trained with a momentum of 0.9
and a weight decay of 0.0005.

We train our network in two stages. In the first stage, we use
a mouse contingency based saliency dataset - SALICON [27]
for training. Though these saliency maps do not correspond to
actual eye fixations, this dataset contains 15000 images, from
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Location Biased Convolution

(a)

6

Fig. 5. (a). Location Biased Convolution Filter for learning location dependent patterns in data (e.g., centre-bias present in the eye-fixations). The usual bias
term associated with convolutional layers and the ReLU activation are assumed to be present and are not shown explicitly in the above diagram. (b). Gaussian
blobs with different horizontal and vertical variances concatenated to the input blob of LBC layers to make the layer’s response location specific.

various indoor and outdoor scenarios, providing a rich descrip-
tion of the problem to the CNN. In the second stage, we train
the network using smaller datasets, with ground-truth saliency
maps generated from actual eye fixation data. We evaluate
our network by testing on the datasets of CAT2000 [23],
MIT300 [5], PASCAL-S [24], OSIE [25] and FIGRIM [26]
datasets. The network used for testing on CAT2000 is trained
in the second stage with CAT2000 train set while the network
used for testing on MIT300, PASCAL-S, OSIE, FIGRIM is
trained with images from MIT1003 [53] dataset. The entire
training procedure takes about 1 day on a K40 GPU with the
deeplab version [46] of caffe deep learning framework [54].

Now we will briefly describe the 5 saliency datasets used
during the training and testing phases of the DeepFix network.

SALICON SALlIency in CONtext (SALICON)
dataset [27] contains 10, 000 training images, 5, 000 validation
images and 5,000 test images for saliency prediction. The
authors of SALICON [27] propose mouse-contingent-tracking
on multi-resolution images as an effective replacement for
eye-contingent-tracking in saliency map generation. Further,
they show, both qualitatively and quantitatively, that a high
degree of similarity exists between the two. With their
method, a large mouse-tracking based saliency dataset of
20,000 images has been created from MS COCO [55]. By
far, this is the largest selective attention dataset with images
from varying context [27]. In our work, we have used 15, 000
images (10,000 training images+5,000 validation images)
during the first stage training of the DeepFix.

CAT2000 : This dataset [23] contains 4000 images selected
from a wide variety of image categories such as Cartoons, Art,
Satellite, Low resolution images, Indoor, Outdoor, Jumbled,
Random, and Line drawings etc.. Overall, this dataset contains
20 different categories with 200 images from each category.
The saliency maps for 2000 images (100 from each category)
are released as a part of the train set while the saliency maps
for the rest of the 2000 images are held-out and they form the
test set. From the set of 2000 train images, we have used 1800
images (90 images from each category) during the second

stage training of the CNN while the remaining 200 images (10
images from each category) are used for validation. After the
second stage training on 1800 images, the proposed method
is evaluated on the CAT2000 test set using the MIT saliency
benchmark [56].

MIT1003 : MIT1003 [53] dataset is a collection of 1003
random images from Flickr and LabelMe whose saliency maps
are generated using eye tracking data from fifteen users. We
use 900 of these images for the second stage of training (for
evaluating on MIT300) and the remaining 103 images for
validation.

MIT300 : This dataset [5] contains 300 natural images from
both indoor and outdoor scenarios. The ground-truth for this
entire dataset is held-out and we use this for evaluating the pro-
posed DeepFix model using the MIT saliency benchmark [56].

PASCAL-S : PASCAL-S [24] consists of 850 natural im-
ages picked from the validation set of PASCAL VOC 2010. We
evaluate our DeepFix model (trained with MIT1003 images in
the second stage) on this dataset to test generalizability.

OSIE : OSIE [25] consists of 700 natural images with eye
tracking annotations from 15 viewers.

FIGRIM : FIGRIM [26] consists of 630 images with eye
tracking annotations of 16 viewers per image on average.

B. Evaluation

We have evaluated the performance of our network on
the MIT Saliency Benchmark [56] with held-out test sets of
MIT300, CAT2000 and also on SALICON-Test, iSUN-Test,
PASCAL-S datasets. The MIT benchmark evaluates models on
a variety of metrics, namely Earth Mover’s Distance (EMD),
Normalized Scanpath Saliency (NSS), Similarity, Linear Cor-
relation Coefficient (CC), AUC-Judd, AUC-Borji, shuffled-
AUC. Previous studies on saliency metrics by Riche er al. [58]
and Borji et al. [59] show that evaluating saliency models by
any one of these metrics does not result in a fair comparison
which can reflect the qualitative results. Here, we briefly
describe these evaluation metrics:
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Fig. 6. Qualitative results of the proposed method on validation images from MIT1003
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Let GG denote the ground-truth saliency map of an image and
S be the map estimated using a saliency prediction model.

Earth Mover’s Distance (EMD) : EMD is a measure
of the distance between the two 2D maps, G and S. It is
the minimal cost of transforming the probability distribution
of the estimated saliency map S to that of the ground truth
map G. Therefore, the lesser the EMD score, the better is the
estimated saliency map.

Normalized Scanpath Saliency (NSS) : Normalized Scan-
path Saliency is a metric specifically introduced for saliency
map evaluaiton by Peters et al. [60]. This metric is calculated
by taking the mean of scores assigned by the unit normalized
saliency map S, (with zero mean and unit standard deviation)
at human eye fixations.

1 N
NSS = ; Sar(i) A3)

Here, N denotes the number of human eye positions.
Linear Correlation Coefficient(CC) : The correlation
coefficient metric between G and S is given by :

cov(G, S)

oG *x 0§

cC = 4)

It gives a measure of the linear relationship between the two
maps. A score close to +1 indicates almost a perfect linear
relationship between the maps.

Similarity metric : Similarity metric computes the sum
of the minimum values at each pixel location for the two
distributions(S 4 and G _4). Here, S 4 and G4 are normal-
ized to be probability distributions.

N
Sim =3 min(S.y (i), Gor () )

N N
> Sali)=1 > Guli)=1 (6)

Here S 4 and GG_4 are the normalized distributions and N
denotes all the pixel locations in the 2D maps. As the name
suggests, a score of 1 denotes that the two maps are the same.

Area Under Curve (AUC) : Area Under the ROC curve
(AUC) is one of the widely used metrics for the evalaution
of the maps estimated by saliency models. In AUC, two
image locations are used : the actual human fixations as the
positive set (fixation distribution) and some points randomly
sampled from the image as the negative set (non-fixation
distribution). Depending upon the choice of the non-fixation
distribution, there are mainly two versions of AUC : AUC
with uniform distribution of non-fixation points (AUC-Judd
and AUC-Borji) and the shuffled-AUC. The shuffled-AUC uses
human fixations of other images in the dataset (to take into
account the center-bias) as the non-fixation distribution. Thus
shuffled-AUC tends to give a lower score to those models
which explicitly incorporate center-bias [61].

C. Results

The qualitative results obtained by the DeepFix network,
along with that of other recent methods on a few example
images from validation set of MIT1003 are shown in Fig. 6. As
shown in the figure, the proposed network is able to efficiently
capture saliency arising from both low-level features such as
colour variations (rows 3, 5), shape (row 8) etc. as well as
the more high-level aspects such as text (rows 10, 11), faces
of animals (rows 1, 9), and humans (row 12). In the case
of images without any strikingly salient regions (row 7), the
network relies on the learnt location pattern of humans gazing
towards the centre to predict saliency accurately. The network
is also able to analyze the relative importance of these factors
and weigh them appropriately in the final saliency map. For
instance, in row 2 of Fig. 6, DeepFix attributes saliency not
to the bright colored T-shirts worn by the people (low-level),
but to their faces (high-level). We attribute the performance of
the proposed CNN architecture to its large depth allowing it to
learn richer semantic representations, filters capturing multi-
scale semantics and global context, as well as the implicit
learning of location dependent patterns in eye fixations.

The quantitative results obtained on the datasets of
CAT2000, MIT300, PASCAL-S, OSIE, FIGRIM are presented
in Tables. I, II, III, IV, V respectively. The results obtained
show that the proposed method achieves state-of-the-art results
on all the datasets. As evident from these tables, our approach
outperforms other methods by a huge margin with respect to
a majority of the metrics — NSS, EMD, CC and Similarity, on
both the datasets. The proposed method does not show a simi-
lar gain in performance on the AUC metrics. The AUC metrics
reward methods primarily based on true positives, while the
false positives generated do not incur heavy penalties. This
can often result in blurred/hazy saliency maps receiving good
scores as shown in Fig. 7. This drawback of AUC metrics
has been previously observed by Borji et al. [65] and Zhao et
al. [66].

The AUC-Shuffled metric is specifically designed to pe-
nalize models which account for the centre-bias present in
eye fixations. Since our network learns this centre-bias as a
location dependent fixation pattern, we obtain lower scores on
shuffled AUC, despite the qualitative similarity of the predicted
saliency maps with the ground-truth. For example, for the
image in row 7 of Fig. 6, the saliency map predicted by
DeepFix receives a shuffled AUC score of 0.68 where as the
map predicted by eDN [39] receives a higher score of 0.70.

D. Large-scale Scene Understanding (LSUN) Saliency Chal-
lenge:

We further evaluate our model by submitting it to LSUN
saliency challenge 2016 [67]. This challenge evaluates models
on the test sets of SALICON and iSUN datasets with respect to
multiple metrics. For evaluation on iSUN datset, our model is
fine-tuned in a single stage with its 9000 image training set and
is validated upon the remaining 926 images. Our model, used
for predicting saliency on SALICON test set, is fine-tuned in a
single stage using 12,500 images of SALICON dataset while
the rest of its 2,500 images are used for validation.
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TABLE I

EXPERIMENTAL EVALUATION ON CAT2000 TEST SET

Saliency Models

AUC-Judd T | SIM T | EMD | | AUC-Borji T | shuffled AUC T | CC T | NSS 1]

DeepFix (Proposed) 0.87 0.75 1.11 0.81 0.57 0.88 2.29
Context Aware Saliency [62] 0.77 0.50 3.09 0.76 0.60 0.42 1.07
Judd Model [53] 0.84 0.46 3.61 0.84 0.56 0.54 1.30
GBVS [4] 0.80 0.51 2.99 0.79 0.58 0.50 1.23

TABLE II

EXPERIMENTAL EVALUATION ON MIT300 TEST SET
[ Saliency Models “ AUC-Judd 1 [ SIM 1 [ EMD | [ AUC-Borji 1 [ shuffled AUC 1 [ CC 1t [ NSS 1 ]

DeepFix (Proposed) 0.87 0.67 2.04 0.80 0.71 0.78 2.26
SALICON [42] 0.87 0.60 2.62 0.85 0.74 0.74 2.12
Mr-CNN [40] 0.77 0.45 433 0.76 0.69 0.41 1.13
Deep Gaze I [37] 0.84 0.39 4.97 0.83 0.66 0.48 1.22
BMS[57] 0.83 0.51 3.35 0.82 0.65 0.55 141
eDN [39] 0.82 0.41 4.56 0.81 0.62 0.45 1.14
Context Aware Saliency [62] 0.74 0.43 4.46 0.73 0.65 0.36 0.95
Judd Model [53] 0.81 0.42 4.45 0.80 0.60 0.47 1.18
GBVS [4] 0.81 0.48 3.51 0.80 0.63 0.48 1.24

TABLE III

EXPERIMENTAL EVALUATION ON PASCAL-S DATASET

Saliency Models

AUC-Judd T | SIMT [ EMD | | AUCBorji T | sAUCT | CCT | NSST |

DeepFix (Proposed) 0.91 0.65 0.54 0.82 0.73 0.78 2.60
SALICON [42] - - - - 0.72 - -

SaliencyUnified [44] 0.89 0.59 0.73 0.81 0.72 0.69 222
JuntingNet [63] 0.88 0.50 1.04 0.86 0.69 0.68 1.90
eDN [39] 0.89 0.39 1.29 0.87 0.65 0.55 1.42
BMS[57] 0.80 041 1.32 0.78 0.67 0.44 1.28
GBVS [4] 0.84 0.43 1.16 0.82 0.65 0.51 1.36

TABLE IV
EXPERIMENTAL EVALUATION ON OSIE DATASET
[ Saliency Models H AUC-Judd 1 [ SIM 1 [ EMD | [ AUC-Borji 1 [ s-AUC 1 [ CC 7t [ NSS 1 ]
DeepFix (Proposed) || 0.91 0.66 1.04 0.83 0.79 0.80 3.04
eDN [39] 0.82 0.36 2.02 0.82 0.68 0.40 1.16
BMS[57] 0.83 0.43 1.89 0.82 0.76 0.46 1.47
GBVS [4] 0.82 0.42 1.67 0.80 0.68 0.44 1.35
AWS [64] 0.82 0.42 1.93 0.81 0.76 0.45 1.45
TABLE V
EXPERIMENTAL EVALUATION ON FIGRIM DATASET
[ Saliency Models H AUC-Judd 1 [ SIM 1 [ EMD | [ AUC-Borji T [ s-AUC 1 [ CC 1 [ NSS 1 ]

DeepFix (Proposed) 0.90 0.66 1.10 0.84 0.67 0.80 2.51
eDN [39] 0.87 0.37 2.88 0.86 0.62 0.50 1.38
BMS[57] 0.76 0.38 3.00 0.73 0.64 0.34 1.05
GBVS [4] 0.82 0.43 2.29 0.81 0.62 0.45 1.26
AWS [64] 0.72 0.36 3.20 0.74 0.64 0.29 0.89

The quantitative results of DeepFix along with that of
the other competitors in the challenge? are shown in Table.
VI and VII. Our model outperforms other competitors on
iSUN, a dataset annotated for saliency using eye fixations
captured from web camera. On SALICON dataset, where

the saliency annotation for images is obtained using psycho-
2The results of our approach along with that of the
other competitors are obtained from LSUN leaderboard -

http://Isun.cs.princeton.edu/leaderboard/index_2016.html

physical paradigm of tracking user’s mouse gestures, we
achieve reasonably good performance. Our model is the win-
ner of LSUN saliency challenge 2016.

E. Analysis

In this subsection, we analyze the effect of LBC layers in
the saliency map prediction. For this analysis, we construct
three variations of our model.
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(a)

(b) () (d)

Fig. 7. Tllustration for the limitation of AUC metrics in penalizing false positives. For the image (a), with ground-truth saliency map (b), we have calculated
the metric scores for two predictions (c) and (d). While (c) matches closely to the ground-truth, (d) can be observed to be highly blurred. The scores obtained
for (c) are EMD = 1.04, NSS = 4.95, shuffled AUC = 0.88, AUC-Borji = 0.91. On the other hand, the scores obtained for (d) are EMD = 1.48, NSS = 3.23,
shuffled AUC = 0.88, AUC-Borji = 0.94. It can be observed that the false positives in (d) are penalized by EMD and NSS metrics significantly. However, the
shuffled AUC assigns the same score for both (c), (d) and contrary to expectations, AUC-Borji assigns a higher score for (d) than for (c). This limitation of
AUC measures for saliency prediction has been observed before by [65][66].

TABLE VIII
ANALYSIS OF THE PROPOSED METHOD ON MIT1003 VALIDATION SET

[ Method [ AUC-Judd T [ SIM{ [ EMD | | AUC-Borji T | shuffled AUC T | CC T [] NSS T |
DF-No-LBC 0.90 0.52 1.45 0.85 0.75 0.70 | 2.54
DF-Explicit-CB_|| 0.90 0.50 1.59 0.87 0.73 069 || 244
DF-LBC 0.90 0.54 1.28 0.85 0.74 072 || 2.58

TABLE VI Fig. 2.

QUANTITATIVE RESULTS ON LSUN CHALLENGE [67] - ISUN
(EYE FIXATION BASED SALIENCY DATASET)

The above discussed models are trained as described in
Sec. IV-A and are evaluated on the validation set of MIT1003.

Team AUC-Judd | CC IG | sAUC The quantitative results obtained for the above three scenarios
Dgg;;%]égT ggg; gtg}i g};i g:gg are presented in Table. VIII. The results emphasize that
NPU_HanLab 0.861 0.815 | 0.156 | 0.550 implicitly learning location dependent patterns through LBC

XRCE 0.855 0.787 | 0.102 | 0.538 layers results in better saliency prediction. We also found that,

UPC-Microsoft-BSC 0.860 0.798 | 0.136 | 0.541 in the case of DF-Explicit-CB, varying the relative weights
of the mean map and the predicted map does not result in
TABLE VII increase of the performance on any of the metrics other than

QUANTITATIVE RESULTS ON LSUN CHALLENGE [67] - SALICON
(MOUSE-GESTURE BASED SALIENCY DATASET)

1) DeepFix with no LBC layers (DF-No-LBC): The data-
independent feature concatenated to the input of LBC
layers, discussed in Sec. III-B, is aimed at introducing
location dependence in the convolution operation. We
remove this from the proposed DeepFix architecture
converting the LBC layers to the usual convolutional
layers.

2) DeepFix with explicit centre bias (DF-Explicit-CB): We
create a mean saliency map, by averaging saliency maps
of all training images, to obtain the centre-bias present
in the dataset. This mean map is added to the output of
DF-No-LBC to generate the final saliency map.

3) DeepFix with LBC layers (DF-LBC): This is the pro-
posed architecture described in Sec. III and shown in

AUC-Borji.

Team AUC-Judd CC 1G sAUC V. CONCLUSION
VAL (Ours) 0.761 0.804 | 0.315 | 0.630
DEEPATTENT 0.767 0.890 | 0.326 | 0.631 In this work, we have proposed a first-of-its-kind fully
NPU_Hanl.ab 0.756 0.775 | 0.318 | 0.637 convolutional neural net - DeepFix for predicting human eye
XRCE 0.756 0.821 | 0.304 | 0.632 . . .1
UPC-MicrosolCBSC 0754 0797 1 0292 | 0.636 fixations on images. The proposed deep net utilizes the po-

tential of the ‘inception module’ to extract complex semantic
features at multiple scales and also exploits the ability of
“filters with holes’ to capture global context via large receptive
fields. We introduce LBC - Location Biased Convolutional
filters, a novel technique which enables the deep network
to learn location dependent patterns. We show the advantage
of LBC over traditional techniques of explicit bias addition,
by means of an ablation analysis. Lastly, we show that an
effective combination of the above mentioned concepts is able
to outperform other state-of-the-art methods by a considerable
margin.
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